Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mov Ecol ; 12(1): 19, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429836

RESUMO

BACKGROUND: Understanding how to connect habitat remnants to facilitate the movement of species is a critical task in an increasingly fragmented world impacted by human activities. The identification of dispersal routes and corridors through connectivity analysis requires measures of landscape resistance but there has been no consensus on how to calculate resistance from habitat characteristics, potentially leading to very different connectivity outcomes. METHODS: We propose a new model, called the Time-Explicit Habitat Selection (TEHS) model, that can be directly used for connectivity analysis. The TEHS model decomposes the movement process in a principled approach into a time and a selection component, providing complementary information regarding space use by separately assessing the drivers of time to traverse the landscape and the drivers of habitat selection. These models are illustrated using GPS-tracking data from giant anteaters (Myrmecophaga tridactyla) in the Pantanal wetlands of Brazil. RESULTS: The time model revealed that the fastest movements tended to occur between 8 p.m. and 5 a.m., suggesting a crepuscular/nocturnal behavior. Giant anteaters moved faster over wetlands while moving much slower over forests and savannas, in comparison to grasslands. We also found that wetlands were consistently avoided whereas forest and savannas tended to be selected. Importantly, this model revealed that selection for forest increased with temperature, suggesting that forests may act as important thermal shelters when temperatures are high. Finally, using the spatial absorbing Markov chain framework, we show that the TEHS model results can be used to simulate movement and connectivity within a fragmented landscape, revealing that giant anteaters will often not use the shortest-distance path to the destination patch due to avoidance of certain habitats. CONCLUSIONS: The proposed approach can be used to characterize how landscape features are perceived by individuals through the decomposition of movement patterns into a time and a habitat selection component. Additionally, this framework can help bridge the gap between movement-based models and connectivity analysis, enabling the generation of time-explicit connectivity results.

2.
Ecology ; 103(9): e3738, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35567292

RESUMO

The Amazon forest has the highest biodiversity on Earth. However, information on Amazonian vertebrate diversity is still deficient and scattered across the published, peer-reviewed, and gray literature and in unpublished raw data. Camera traps are an effective non-invasive method of surveying vertebrates, applicable to different scales of time and space. In this study, we organized and standardized camera trap records from different Amazon regions to compile the most extensive data set of inventories of mammal, bird, and reptile species ever assembled for the area. The complete data set comprises 154,123 records of 317 species (185 birds, 119 mammals, and 13 reptiles) gathered from surveys from the Amazonian portion of eight countries (Brazil, Bolivia, Colombia, Ecuador, French Guiana, Peru, Suriname, and Venezuela). The most frequently recorded species per taxa were: mammals: Cuniculus paca (11,907 records); birds: Pauxi tuberosa (3713 records); and reptiles: Tupinambis teguixin (716 records). The information detailed in this data paper opens up opportunities for new ecological studies at different spatial and temporal scales, allowing for a more accurate evaluation of the effects of habitat loss, fragmentation, climate change, and other human-mediated defaunation processes in one of the most important and threatened tropical environments in the world. The data set is not copyright restricted; please cite this data paper when using its data in publications and we also request that researchers and educators inform us of how they are using these data.


Assuntos
Florestas , Mamíferos , Animais , Biodiversidade , Aves , Brasil , Humanos , Répteis , Vertebrados
3.
Integr Zool ; 17(2): 285-296, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33738919

RESUMO

Mammals can show conspicuous behavioral responses to thermal variation, including changes in movement patterns. We used an integrative approach to understand how environmental temperature can drive the movement behavior of a mammal with low capacity for physiological thermoregulation, the giant anteater (Myrmecophaga tridactyla). We tracked 52 giant anteaters in 7 areas throughout the Brazilian savannah. We estimated the distance moved, area used, use of forest areas, and mean environmental temperature for each monitoring day of each individual. We modeled these data with Mixed Structural Equations - considering the possible interactions between our variables and controlling for sex and body mass. Giant anteaters reduced displacement and increased forest use with decreasing environmental temperature, probably because of their low body heat production. It is possible that they reduce distance moved and area used by reducing the duration of activity. With decreasing temperature, forest habitats become warmer than open ones, besides buffer rain and chilly winds. Reducing displacement and using forests are important strategies to reduce body heat loss and the energetic costs of thermoregulation. However, decreasing movement can limit food access and, consequently, fitness. Therefore, we highlight the importance of forests as thermal shelters. With increasing frequency and intensity of extreme weather events, we showed the need to preserve forest patches to offer suitable conditions for tropical mammals' behavioral thermoregulation. In this context, policies favoring deforestation on Brazilian territory are especially worrisome. Finally, we emphasize the need of integrative approaches to understand the complex interactions between organisms and the environment.


Assuntos
Ecossistema , Vermilingua , Animais , Regulação da Temperatura Corporal , Florestas , Mamíferos , Temperatura
4.
PLoS One ; 16(8): e0253345, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34407068

RESUMO

Knowing the influence of intrinsic and environmental traits on animals' movement is a central interest of ecology and can aid to enhance management decisions. The giant anteater (Myrmecophaga tridactyla) is a vulnerable mammal that presents low capacity for physiological thermoregulation and uses forests as thermal shelters. Here, we aim to provide reliable estimates of giant anteaters' movement patterns and home range size, as well as untangle the role of intrinsic and environmental drivers on their movement. We GPS-tracked 19 giant anteaters in Brazilian savannah. We used a continuous-time movement model to estimate their movement patterns (described by home range crossing time, daily distance moved and directionality), and provide an autocorrelated kernel density estimate of home range size. Then, we used mixed structural equations to integratively model the effects of sex, body mass and proportion of forest cover on movement patterns and home range size, considering the complex net of interactions between these variables. Male giant anteaters presented more intensive space use and larger home range than females with similar body mass, as it is expected in polygynous social mating systems. Males and females increased home range size with increasing body mass, but the allometric scaling of intensity of space use was negative for males and positive for females, indicating different strategies in search for resources. With decreasing proportion of forest cover inside their home ranges, and, consequently, decreasing thermal quality of their habitat, giant anteaters increased home range size, possibly to maximize the chances of accessing thermal shelters. As frequency and intensity of extreme weather events and deforestation are increasing, effective management efforts need to consider the role of forests as an important thermal resource driving spatial requirements of this species. We highlight that both intrinsic and environmental drivers of animal movement should be integrated to better guide management strategies.


Assuntos
Eutérios/fisiologia , Comportamento de Retorno ao Território Vital , Distribuição Animal , Animais , Brasil , Ecossistema , Feminino , Florestas , Masculino , Modelos Biológicos , Comportamento Sexual Animal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA